skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Ning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona – a unique system-wide blackout event with complete records of weather-induced outages. The model reveals a resilience pattern that was not captured by the previous models: early failure of certain critical components enhances overall system resilience. Sensitivity analysis on various scenarios of behind-the-meter solar integration demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without pairing it with energy storage can exacerbate the probability of catastrophic blackouts. 
    more » « less
    Free, publicly-accessible full text available March 16, 2027
  2. Rapid global electrification is deepening cross-sector interdependence, fundamentally reshaping the resilience of energy systems in the face of intensifying climate extremes. While increased integration across energy generation, transmission, and consumption sectors can significantly enhance operational flexibility, it can also amplify the risk of cross-sector cascading failures under extreme weather events, giving rise to an emerging resilience paradox that remains insufficiently understood. This study examines evolving cross-sector interactions and their implications for climate resilience by analyzing global electrification trends and regional cases in Texas, integrated with global and downscaled projections of climate extremes. By identifying critical vulnerabilities and flexibility associated with increasing sectoral interdependence, this study highlights the necessity of adopting resilience-oriented, system-level strategies for system operators and policymakers to mitigate cross-sector cascading risks and maximize the benefits of electrification in a changing climate. 
    more » « less
    Free, publicly-accessible full text available June 2, 2026
  3. Distribution networks, with large-scale integration of distributed renewable resources, particularly rooftop solar photovoltaic systems, represent the most extensive yet vulnerable components of modern electric power systems during climate extremes such as hurricanes. However, existing day-ahead electricity dispatch approaches primarily focus on the transmission network and lack the capability to manage the spatiotemporal risks associated with the vast distribution networks, which can potentially lead to significant power imbalances due to the mismatches between scheduled generation and actual demand. To address this increasingly critical gap under intensifying climate extremes and growing distributed renewable integration, we introduce Risk-aware Electricity Dispatch under Climate Extremes with Renewable integration (REDUCER), a risk-aware day-ahead electricity dispatch model that incorporates high-resolution spatiotemporal risk analysis for distribution networks with large-scale distributed renewable integration into an Entropic Value-at-Risk-constrained mixed-integer convex optimization framework. Applied to the 2022 Puerto Rico power grid under Hurricane Fiona, the proposed REDUCER model is seen to effectively manage these risks with substantially less reliance on additional flexibility resources to cope with power imbalances, reducing overall operational costs by about 30% under extreme cases compared to standard unit commitment strategies already informed by average demand loss. Also, the proposed REDUCER model consistently demonstrates its effectiveness in managing the increasing temporal net demand variability introduced by growing large-scale distributed solar integration while maintaining minimal operational costs. This model offers a practical solution for cost-effective and resilient electricity dispatch of modern power systems with large-scale renewable integration facing intensifying climate risks. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026
  4. Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher. 
    more » « less
  5. Conventional computational models of climate adaptation frameworks inadequately consider decision-makers’ capacity to learn, update, and improve decisions. Here, we investigate the potential of reinforcement learning (RL), a machine learning technique that efficaciously acquires knowledge from the environment and systematically optimizes dynamic decisions, in modeling and informing adaptive climate decision-making. We consider coastal flood risk mitigations for Manhattan, New York City, USA (NYC), illustrating the benefit of continuously incorporating observations of sea-level rise into systematic designs of adaptive strategies. We find that when designing adaptive seawalls to protect NYC, the RL-derived strategy significantly reduces the expected net cost by 6 to 36% under the moderate emissions scenario SSP2-4.5 (9 to 77% under the high emissions scenario SSP5-8.5), compared to conventional methods. When considering multiple adaptive policies, including accomodation and retreat as well as protection, the RL approach leads to a further 5% (15%) cost reduction, showing RL’s flexibility in coordinatively addressing complex policy design problems. RL also outperforms conventional methods in controlling tail risk (i.e., low probability, high impact outcomes) and in avoiding losses induced by misinformation about the climate state (e.g., deep uncertainty), demonstrating the importance of systematic learning and updating in addressing extremes and uncertainties related to climate adaptation. 
    more » « less
    Free, publicly-accessible full text available March 18, 2026
  6. Measuring and managing the risk of extensive distribution network outages during extreme events is critical for ensuring system-level energy balance in transmission network operations. However, existing risk measures used in stochastic optimization of power systems are computationally intractable for this problem involving large numbers of discrete random variables. Using a new coherent risk measure, Entropic Value-at-Risk (EVaR), that requires significantly less computational complexity, we propose an EVaR-constrained optimal power flow model that can quantify and manage the outage risk of extensive distribution feeders. The optimization problem with EVaR constraints on discrete random variables is equivalently reformulated as a conic programming model, which allows the problem to leverage the computational efficiency of conic solvers. The superiority of the proposed model is validated on the real-world Puerto Rico transmission grid combined with its large-scale distribution networks. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  7. Tropical cyclone (TC) winds control design wind speeds for much of the eastern United States. Those winds are likely to intensify with climate change, but climate change was not considered in the ASCE 7-22 design wind speed maps, potentially causing many structures to be designed with unacceptably high levels of risk. In this study, we investigate (1) the increases in design wind speed due to climate change; and (2) the resulting risk to structures if climate change is not considered. We estimated the design wind speeds for US counties affected by TCs along the Gulf and Atlantic coasts using nonstationary methods based on a set of synthetic TCs (1,000–1,500 year simulations) downscaled from the latest global climate projections (CMIP6) for the high-emissions scenario (SSP5-8.5). It was found that over the 21st century, 50-year return period winds would increase by an average of around 10% along the US Gulf and Atlantic coasts. Depending on the risk category, design lifetime, and year of construction, design wind speeds (targeting lifetime exceedance probability) are projected to increase by an average of 3%–6% for all counties studied and 6%–15% for coastal counties. For Risk Category II–IV structures, depending on the design lifetime and year of construction, 8%–36% of all counties studied and 25%–66% of coastal counties would experience projected lifetime exceedance probabilities that were at least two risk categories too low; for example, in up to 26% of all counties studied and 54% of coastal counties, a Risk Category III structure would be effectively designed as Risk Category I or lower. 
    more » « less
  8. In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. 
    more » « less